adelie.cv.CVGrpnetResult#
- class adelie.cv.CVGrpnetResult(lmdas: ndarray, losses: ndarray, avg_losses: ndarray, best_idx: int)[source]#
- Result of K-fold CV group elastic net. - Methods - __init__(lmdas, losses, avg_losses, best_idx)- fit(X, glm, **grpnet_params)- Fits group elastic net until the best CV \(\lambda\). - Plots the average K-fold CV loss. - Attributes - The common regularization path used for all folds. - losses[k,i]is the CV loss when validating on fold- kat- lmdas[i].- avg_losses[i]is the average CV loss at- lmdas[i].- Argmin of - avg_losses.- fit(X: ndarray | MatrixNaiveBase32 | MatrixNaiveBase64, glm: GlmBase32 | GlmBase64 | GlmMultiBase32 | GlmMultiBase64, **grpnet_params)[source]#
- Fits group elastic net until the best CV \(\lambda\). - Parameters:
- X(n, p) Union[ndarray, MatrixNaiveBase32, MatrixNaiveBase64]
- Feature matrix. It is typically one of the matrices defined in - adelie.matrixsubmodule or- numpy.ndarray.
- glmUnion[GlmBase32, GlmBase64, GlmMultiBase32, GlmMultiBase64]
- GLM object. It is typically one of the GLM classes defined in - adelie.glmsubmodule.
- **grpnet_paramsoptional
- Parameters to - adelie.solver.grpnet().
 
- Returns:
- state
- Result of calling - adelie.solver.grpnet().
 
 - See also 
 - plot_loss()[source]#
- Plots the average K-fold CV loss. - For each fitted \(\lambda\), the average K-fold CV loss as well as an error bar of one standard deviation (above and below) is plotted. 
 - lmdas: ndarray#
- The common regularization path used for all folds. 
 - losses: ndarray#
- losses[k,i]is the CV loss when validating on fold- kat- lmdas[i].
 - avg_losses: ndarray#
- avg_losses[i]is the average CV loss at- lmdas[i].
 - best_idx: int#
- Argmin of - avg_losses.