adelie.diagnostic.coefficient#
- adelie.diagnostic.coefficient(lmda: float, betas: csr_matrix, intercepts: ndarray, lmdas: ndarray)[source]#
Computes the coefficient at \(\lambda\) using linear interpolation of solutions.
The linearly interpolated coefficient is given by
\[\begin{align*} \hat{\beta}(\lambda) = \frac{\lambda - \lambda_{k+1}}{\lambda_{k} - \lambda_{k+1}} \hat{\beta}(\lambda_k) + \frac{\lambda_{k} - \lambda}{\lambda_{k} - \lambda_{k+1}} \hat{\beta}(\lambda_{k+1}) \end{align*}\]if \(\lambda \in [\lambda_{k+1}, \lambda_k]\). If \(\lambda\) lies above the largest value in
lmdas
or below the smallest value, then we simply take the solution at the respective ends. The same formula holds for intercepts.- Parameters:
- lmdafloat
New regularization parameter at which to find the solution.
- betas(L, p) csr_matrix
Coefficient vectors \(\beta\).
- intercepts(L,) ndarray
Intercepts.
- lmdas(L,) ndarray
Regularization parameters \(\lambda\).
- Returns:
- beta(1, p) csr_matrix
Linearly interpolated coefficient vector at \(\lambda\).
- interceptfloat
Linearly interpolated intercept at \(\lambda\).