adelie.glm.binomial#
- adelie.glm.binomial(y: ndarray, *, weights: ndarray | None = None, link: str = 'logit', dtype: float32 | float64 | None = None)[source]#
Creates a Binomial GLM family object.
The Binomial GLM family with the logit link function specifies the loss function as:
\[\begin{align*} \ell(\eta) = \sum\limits_{i=1}^n w_i \left( -y_i \eta_i + \log(1 + e^{\eta_i}) \right) \end{align*}\]The link function is given by
\[\begin{align*} g(\mu)_i &= \log\left(\frac{\mu_i}{1 - \mu_i}\right) \end{align*}\]The Binomial GLM family with the probit link function specifies the loss function as:
\[\begin{align*} \ell(\eta) = -\sum\limits_{i=1}^n w_i \left( y_i \log(\Phi(\eta_i)) + (1-y_i) \log(1-\Phi(\eta_i)) \right) \end{align*}\]where \(\Phi\) is the standard normal CDF. The link function is given by
\[\begin{align*} g(\mu)_i &= \Phi^{-1}(\mu_i) \end{align*}\]We assume that \(y_i \in [0,1]\).
- Parameters:
- y(n,) ndarray
Response vector \(y\).
- weights(n,) ndarray, optional
Observation weights \(W\). Weights are normalized such that they sum to
1
. Default isNone
, in which case, it is set tonp.full(n, 1/n)
.- linkstr, optional
The link function type. It must be one of the following:
"logit"
: the logit link function."probit"
: the probit link function.
Default is
"logit"
.- dtypeUnion[float32, float64], optional
The underlying data type. If
None
, it is inferred fromy
, in which casey
must have an underlying data type ofnumpy.float32
ornumpy.float64
. Default isNone
.
- Returns:
- glm
Binomial GLM object.