adelie.state.gaussian_cov#
- adelie.state.gaussian_cov(*, A: MatrixCovBase32 | MatrixCovBase64, v: ndarray, constraints: list[ConstraintBase32 | ConstraintBase64], groups: ndarray, group_sizes: ndarray, alpha: float, penalty: ndarray, screen_set: ndarray, screen_beta: ndarray, screen_is_active: ndarray, active_set_size: int, active_set: ndarray, rsq: float, lmda: float, grad: ndarray, lmda_path: ndarray | None = None, lmda_max: float | None = None, max_iters: int = 100000, tol: float = 1e-07, rdev_tol: float = 0.0001, newton_tol: float = 1e-12, newton_max_iters: int = 1000, n_threads: int = 1, early_exit: bool = True, screen_rule: str = 'pivot', min_ratio: float = 0.01, lmda_path_size: int = 100, max_screen_size: int | None = None, max_active_size: int | None = None, pivot_subset_ratio: float = 0.1, pivot_subset_min: int = 1, pivot_slack_ratio: float = 1.25)[source]#
Creates a Gaussian, covariance method state object.
- Parameters:
- A(p, p) Union[MatrixCovBase32, MatrixCovBase64]
Positive semi-definite matrix. It is typically one of the matrices defined in
adelie.matrixsubmodule.- v(p,) ndarray
Linear term.
- constraints(G,) list[Union[ConstraintBase32, ConstraintBase64]]
List of constraints for each group.
constraints[i]is the constraint object corresponding to groupi. Ifconstraints[i]isNone, then theith group is unconstrained. IfNone, every group is unconstrained.- groups(G,) ndarray
List of starting indices to each group where G is the number of groups.
groups[i]is the starting index of theith group.- group_sizes(G,) ndarray
List of group sizes corresponding to each element of
groups.group_sizes[i]is the size of theith group.- alphafloat
Elastic net parameter. It must be in the range \([0,1]\).
- penalty(G,) ndarray
Penalty factor for each group in the same order as
groups. It must be a non-negative vector.- screen_set(s,) ndarray
List of indices into
groupsthat correspond to the screen groups.screen_set[i]isith screen group.screen_setmust contain at least the true (optimal) active groups when the regularization is given bylmda.- screen_beta(ws,) ndarray
Coefficient vector on the screen set.
screen_beta[b:b+p]is the coefficient for theith screen group wherek = screen_set[i],b = screen_begins[i], andp = group_sizes[k]. The values can be arbitrary but it is recommended to be close to the solution atlmda.- screen_is_active(s,) ndarray
Boolean vector that indicates whether each screen group in
groupsis active or not.screen_is_active[i]isTrueif and only ifscreen_set[i]is active.- active_set_sizeint
Number of active groups.
active_set[i]is only well-defined foriin the range[0, active_set_size).- active_set(G,) ndarray
List of indices into
screen_setthat correspond to active groups.screen_set[active_set[i]]is theith active group. An active group is one with non-zero coefficient block, that is, for everyith active group,screen_beta[b:b+p] == 0wherej = active_set[i],k = screen_set[j],b = screen_begins[j], andp = group_sizes[k].- rsqfloat
The change in unnormalized \(R^2\) given by \(2(\ell(\beta_{\mathrm{old}}) - \ell(\beta_{\mathrm{curr}}))\). Usually, \(\beta_{\mathrm{old}} = 0\) and \(\beta_{\mathrm{curr}}\) is given by
screen_beta.- lmdafloat
The last regularization parameter that was attempted to be solved.
- grad(p,) ndarray
The full gradient \(v - A \beta\) where \(\beta\) is given by
screen_beta.- lmda_path(L,) ndarray, optional
The regularization path to solve for. The full path is not considered if
early_exitisTrue. It is recommended that the path is sorted in decreasing order. IfNone, the path will be generated. Default isNone.- lmda_maxfloat, optional
The smallest \(\lambda\) such that the true solution is zero for all coefficients that have a non-vanishing group lasso penalty (\(\ell_2\)-norm). If
None, it will be computed. Default isNone.- max_itersint, optional
Maximum number of coordinate descents. Default is
int(1e5).- tolfloat, optional
Coordinate descent convergence tolerance. Default is
1e-7.- rdev_tolfloat, optional
Relative percent deviance explained tolerance. If the difference of the last two training percent deviance explained exceeds the last training percent deviance explained scaled by this quantity, then the solver terminates. Default is
1e-4.- newton_tolfloat, optional
Convergence tolerance for the BCD update. Default is
1e-12.- newton_max_itersint, optional
Maximum number of iterations for the BCD update. Default is
1000.- n_threadsint, optional
Number of threads. Default is
1.- early_exitbool, optional
Trueif the function should early exit based on training percent deviance explained. Default isTrue.- min_ratiofloat, optional
The ratio between the largest and smallest \(\lambda\) in the regularization sequence if it is to be generated. Default is
1e-2.- lmda_path_sizeint, optional
Number of regularizations in the path if it is to be generated. Default is
100.- screen_rulestr, optional
The type of screening rule to use. It must be one of the following options:
"strong": adds groups whose active scores are above the strong threshold."pivot": adds groups whose active scores are above the pivot cutoff with slack.
Default is
"pivot".- max_screen_sizeint, optional
Maximum number of screen groups allowed. The function will return a valid state and guarantees to have screen set size less than or equal to
max_screen_size. IfNone, it will be set to the total number of groups. Default isNone.- max_active_sizeint, optional
Maximum number of active groups allowed. The function will return a valid state and guarantees to have active set size less than or equal to
max_active_size. IfNone, it will be set to the total number of groups. Default isNone.- pivot_subset_ratiofloat, optional
If screening takes place, then the
(1 + pivot_subset_ratio) * slargest active scores are used to determine the pivot point wheresis the current screen set size. It is only used ifscreen_rule="pivot". Default is0.1.- pivot_subset_minint, optional
If screening takes place, then at least
pivot_subset_minnumber of active scores are used to determine the pivot point. It is only used ifscreen_rule="pivot". Default is1.- pivot_slack_ratiofloat, optional
If screening takes place, then
pivot_slack_rationumber of groups with next smallest (new) active scores below the pivot point are also added to the screen set as slack. It is only used ifscreen_rule="pivot". Default is1.25.
- Returns:
- wrap
Wrapper state object.