adelie.adelie_core.constraint.ConstraintOneSidedADMM64#
- class adelie.adelie_core.constraint.ConstraintOneSidedADMM64#
Core constraint class for one-sided bound constraint with ADMM solver.
Methods
__init__
(self, sgn, b, max_iters, tol_abs, ...)buffer_size
(self)Returns the buffer size in unit of 8 bytes.
clear
(self)Clears internal data.
dual
(self, arg0, arg1)Returns the current dual variable in sparse format.
duals
(self)Returns the number of dual variables.
duals_nnz
(self)Returns the number of non-zero dual values.
gradient
(self, x, out)Computes the gradient of the Lagrangian.
gradient_static
(self, x, mu, out)Computes the gradient of the Lagrangian.
primals
(self)Returns the number of primal variables.
project
(self, x)Computes a projection onto the feasible set.
solve
(self, x, quad, linear, l1, l2, Q, buffer)Computes the block-coordinate update.
solve_zero
(self, arg0, arg1)Solves the zero primal KKT condition problem.
Attributes
Number of duals.
Number of primals.
- __init__(self: adelie.adelie_core.constraint.ConstraintOneSidedADMM64, sgn: numpy.ndarray[numpy.float64[1, n]], b: numpy.ndarray[numpy.float64[1, n]], max_iters: int, tol_abs: float, tol_rel: float, rho: float) None #
- buffer_size(self: adelie.adelie_core.constraint.ConstraintBase64) int #
Returns the buffer size in unit of 8 bytes.
- Returns:
- sizeint
Buffer size in unit of 8 bytes.
- clear(self: adelie.adelie_core.constraint.ConstraintBase64) None #
Clears internal data.
The state of the constraint object must return back to that of the initial construction.
- dual(self: adelie.adelie_core.constraint.ConstraintBase64, arg0: numpy.ndarray[numpy.int64[1, n], flags.writeable], arg1: numpy.ndarray[numpy.float64[1, n], flags.writeable]) None #
Returns the current dual variable in sparse format.
- Parameters:
- indices(nnz,) ndarray
The indices with non-zero dual values. The size must be at least the value returned by
duals_nnz()
.- values(nnz,) ndarray
The non-zero dual values corresponding to
indices
. The size must be at least the value returned byduals_nnz()
.
- duals(self: adelie.adelie_core.constraint.ConstraintBase64) int #
Returns the number of dual variables.
- Returns:
- sizeint
Number of dual variables.
- duals_nnz(self: adelie.adelie_core.constraint.ConstraintBase64) int #
Returns the number of non-zero dual values.
- Returns:
- nnzint
Number of non-zero dual values.
- gradient(self: adelie.adelie_core.constraint.ConstraintBase64, x: numpy.ndarray[numpy.float64[1, n]], out: numpy.ndarray[numpy.float64[1, n], flags.writeable]) None #
Computes the gradient of the Lagrangian.
The gradient of the Lagrangian (with respect to the primal) is given by
\[\begin{align*} \mu^\top \phi'(x) \end{align*}\]where \(\phi'(x)\) is the Jacobian of \(\phi\) at \(x\) and \(\mu\) is the dual solution from the last call to
solve()
.- Parameters:
- x(d,) ndarray
The primal \(x\) at which to evaluate the gradient.
- out(d,) ndarray
The output vector to store the gradient.
- gradient_static(self: adelie.adelie_core.constraint.ConstraintBase64, x: numpy.ndarray[numpy.float64[1, n]], mu: numpy.ndarray[numpy.float64[1, n]], out: numpy.ndarray[numpy.float64[1, n], flags.writeable]) None #
Computes the gradient of the Lagrangian.
The gradient of the Lagrangian (with respect to the primal) is given by
\[\begin{align*} \mu^\top \phi'(x) \end{align*}\]where \(\phi'(x)\) is the Jacobian of \(\phi\) at \(x\) and \(\mu\) is the dual given by
mu
.- Parameters:
- x(d,) ndarray
The primal \(x\) at which to evaluate the gradient.
- mu(m,) ndarray
The dual \(\mu\) at which to evaluate the gradient.
- out(d,) ndarray
The output vector to store the gradient.
- primals(self: adelie.adelie_core.constraint.ConstraintBase64) int #
Returns the number of primal variables.
- Returns:
- sizeint
Number of primal variables.
- project(self: adelie.adelie_core.constraint.ConstraintBase64, x: numpy.ndarray[numpy.float64[1, n], flags.writeable]) None #
Computes a projection onto the feasible set.
The feasible set is defined by \(\{x : \phi(x) \leq 0 \}\). A projection can be user-defined, that is, the user may define any norm \(\|\cdot\|\) such that the function returns a solution to
\[\begin{split}\begin{align*} \mathrm{minimize}_z \quad& \|x - z\| \\ \text{subject to} \quad& \phi(z) \leq 0 \end{align*}\end{split}\]This function is only used by the solver after convergence to attempt to bring the coordinates into the feasible set. If not overriden, it will perform a no-op, assuming \(x\) is already feasible.
- Parameters:
- x(d,) ndarray
The primal \(x\) to project onto the feasible set. The output is stored back in this argument.
- solve(self: adelie.adelie_core.constraint.ConstraintBase64, x: numpy.ndarray[numpy.float64[1, n], flags.writeable], quad: numpy.ndarray[numpy.float64[1, n]], linear: numpy.ndarray[numpy.float64[1, n]], l1: float, l2: float, Q: numpy.ndarray[numpy.float64[m, n], flags.f_contiguous], buffer: numpy.ndarray[numpy.uint64[1, n], flags.writeable]) None #
Computes the block-coordinate update.
The block-coordinate update is given by solving
\[\begin{split}\begin{align*} \mathrm{minimize}_x \quad& \frac{1}{2} x^\top \Sigma x - v^\top x + \lambda_1 \|x\|_2 + \frac{\lambda_2}{2} \|x\|_2^2 \\ \text{subject to} \quad& \phi(Q x) \leq 0 \end{align*}\end{split}\]where \(\phi\) defines the current constraint.
- Parameters:
- x(d,) ndarray
The primal \(x\). The passed-in values may be used as a warm-start for the internal solver. The output is stored back in this argument.
- quad(d,) ndarray
The quadratic component \(\Sigma\).
- linear(d,) ndarray
The linear component \(v\).
- l1float
The first regularization \(\lambda_1\).
- l2float
The second regularization \(\lambda_2\).
- Q(d, d) ndarray
Orthogonal matrix \(Q\).
- buffer(b,) ndarray
Buffer of type
uint64_t
aligned at 8 bytes. The size must be at least as large asbuffer_size()
.
- solve_zero(self: adelie.adelie_core.constraint.ConstraintBase64, arg0: numpy.ndarray[numpy.float64[1, n]], arg1: numpy.ndarray[numpy.uint64[1, n], flags.writeable]) float #
Solves the zero primal KKT condition problem.
The zero primal KKT condition problem is given by
\[\begin{align*} \mathrm{minimize}_{\mu \geq 0} \|v - \phi'(0)^\top \mu\|_2 \end{align*}\]where \(\phi\) is the current constraint function and \(\mu\) is the dual variable. It is advised, but not necessary, that the object stores the solution internally so that a subsequent call to
dual()
will return the solution.- Parameters:
- v(d,) ndarray
The vector \(v\).
- buffer(b,) ndarray
Buffer of type
uint64_t
aligned at 8 bytes. The size must be at least as large asbuffer_size()
.
- Returns:
- normfloat
The optimal objective for the zero primal KKT condition problem.
- dual_size#
Number of duals.
- primal_size#
Number of primals.