adelie.sklearn.GroupElasticNet#
- class adelie.sklearn.GroupElasticNet(solver: str = 'grpnet', family: str = 'gaussian')[source]#
- Group Elastic Net estimator with scikit-learn compatible API. - Parameters:
- solverstr, optional
- The solver to use. It must be one of the following: - "grpnet"
- "cv_grpnet"
 - Default is - "grpnet".
- familystr, optional
- The family of the response variable. It must be one of the following: - "gaussian"
- "binomial"
- "poisson"
- "multigaussian"
- "multinomial"
 - Default is - "gaussian".
 
 - Methods - __init__([solver, family])- Initialize the GroupElasticNet estimator. - fit(X, y, **kwargs)- Fit the Group Elastic Net model. - Get metadata routing of this object. - get_params([deep])- Get parameters for this estimator. - predict(X)- Predict using the fitted Group Elastic Net model. - Predict class probabilities. - score(X, y)- Compute the R-squared score of the model. - set_params(**params)- Set the parameters of this estimator. - __init__(solver: str = 'grpnet', family: str = 'gaussian')[source]#
- Initialize the GroupElasticNet estimator. 
 - fit(X: ndarray | MatrixNaiveBase32 | MatrixNaiveBase64, y: ndarray, **kwargs: Dict[str, Any])[source]#
- Fit the Group Elastic Net model. - Parameters:
- X(n, p) Union[ndarray, MatrixNaiveBase32, MatrixNaiveBase64]
- Feature matrix. It is typically one of the matrices defined in - adelie.matrixsubmodule or- numpy.ndarray.
- y(n,) ndarray
- Response vector. 
- **kwargsDict[str, Any], optional
- Additional arguments to pass to the solver. 
 
- Returns:
- self
- Returns an instance of self. 
 
 
 - get_metadata_routing()#
- Get metadata routing of this object. - Please check User Guide on how the routing mechanism works. - Returns:
- routingMetadataRequest
- A - MetadataRequestencapsulating routing information.
 
 
 - get_params(deep=True)#
- Get parameters for this estimator. - Parameters:
- deepbool, default=True
- If True, will return the parameters for this estimator and contained subobjects that are estimators. 
 
- Returns:
- paramsdict
- Parameter names mapped to their values. 
 
 
 - predict(X: ndarray) ndarray[source]#
- Predict using the fitted Group Elastic Net model. - If - self.familyis either- "binomial"or- "multinomial", the output is class label predictions based on the largest probability predictions. Otherwise, the output is linear predictions.- Parameters:
- X(n, p) Union[ndarray, MatrixNaiveBase32, MatrixNaiveBase64]
- Feature matrix. It is typically one of the matrices defined in - adelie.matrixsubmodule or- numpy.ndarray.
 
- Returns:
- predsndarray
- The class or linear predictions at - X.
 
 
 - predict_proba(X: ndarray | MatrixNaiveBase32 | MatrixNaiveBase64) ndarray[source]#
- Predict class probabilities. - This method is only available for - "binomial"and- "multinomial"families.- Parameters:
- X(n, p) Union[ndarray, MatrixNaiveBase32, MatrixNaiveBase64]
- Feature matrix. It is typically one of the matrices defined in - adelie.matrixsubmodule or- numpy.ndarray.
 
- Returns:
- probandarray
- The class probabilities at - X.
 
 
 - score(X: ndarray, y: ndarray) float[source]#
- Compute the R-squared score of the model. - Parameters:
- X(n, p) Union[ndarray, MatrixNaiveBase32, MatrixNaiveBase64]
- Feature matrix. It is typically one of the matrices defined in - adelie.matrixsubmodule or- numpy.ndarray.
- y(n,) ndarray
- Response vector. 
 
- Returns:
- R2float
- The R-squared score. 
 
 
 - set_params(**params)#
- Set the parameters of this estimator. - The method works on simple estimators as well as on nested objects (such as - Pipeline). The latter have parameters of the form- <component>__<parameter>so that it’s possible to update each component of a nested object.- Parameters:
- **paramsdict
- Estimator parameters. 
 
- Returns:
- selfestimator instance
- Estimator instance.