adelie.adelie_core.state.StatePinball32#

class adelie.adelie_core.state.StatePinball32#

Core state class for pinball least squares.

Methods

__init__(*args, **kwargs)

Overloaded function.

solve(self)

Solves the state-specific problem.

Attributes

active_set

Active set buffer.

active_set_size

Active set size.

benchmark_fit_active

Benchmark time for fitting on the active set.

benchmark_fit_screen

Benchmark time for fitting on the screen set.

benchmark_gradient

Benchmark time for computing the gradient.

benchmark_viols_sort

Benchmark time for sorting the violations.

beta

Coefficient vector.

dbg_active_set

List of the active sets at each outer loop.

dbg_beta

List of the coefficient vectors at each outer loop.

dbg_iter

List of the number of iterations at each outer loop.

dbg_loss

List of the losses at each outer loop.

grad

Internal buffer that is implementation-defined.

is_active

Boolean buffer to indicate the active variables.

is_screen

Boolean buffer to indicate the screen variables.

iters

Number of coordinate descent iterations.

loss

Loss \(\frac{1}{2} \|S^{-\frac{1}{2}} v - S^{\frac{1}{2}} A^\top \beta\|_2^2\).

resid

Residual \(v - S A^\top \beta\).

screen_AS

\(A S\).

screen_ASAT_diag

Diagonal of \(A S A^\top\).

screen_set

Screen set buffer.

screen_set_size

Screen set size.

__init__(*args, **kwargs)#

Overloaded function.

  1. __init__(self: adelie.adelie_core.state.StatePinball32, A: adelie.adelie_core.matrix.MatrixConstraintBase32, y_var: float, S: numpy.ndarray[numpy.float32[m, n], flags.f_contiguous], penalty_neg: numpy.ndarray[numpy.float32[1, n]], penalty_pos: numpy.ndarray[numpy.float32[1, n]], kappa: int, max_iters: int, tol: float, screen_set_size: int, screen_set: numpy.ndarray[numpy.int64[1, n], flags.writeable], is_screen: numpy.ndarray[bool[1, n], flags.writeable], screen_ASAT_diag: numpy.ndarray[numpy.float32[1, n], flags.writeable], screen_AS: numpy.ndarray[numpy.float32[m, n], flags.writeable, flags.c_contiguous], active_set_size: int, active_set: numpy.ndarray[numpy.int64[1, n], flags.writeable], is_active: numpy.ndarray[bool[1, n], flags.writeable], beta: numpy.ndarray[numpy.float32[1, n], flags.writeable], resid: numpy.ndarray[numpy.float32[1, n], flags.writeable], grad: numpy.ndarray[numpy.float32[1, n], flags.writeable], loss: float) -> None

  2. __init__(self: adelie.adelie_core.state.StatePinball32, arg0: adelie.adelie_core.state.StatePinball32) -> None

solve(self: adelie.adelie_core.state.StatePinball32) dict#

Solves the state-specific problem.

active_set#

Active set buffer.

active_set_size#

Active set size.

benchmark_fit_active#

Benchmark time for fitting on the active set.

benchmark_fit_screen#

Benchmark time for fitting on the screen set.

benchmark_gradient#

Benchmark time for computing the gradient.

benchmark_viols_sort#

Benchmark time for sorting the violations.

beta#

Coefficient vector.

dbg_active_set#

List of the active sets at each outer loop.

dbg_beta#

List of the coefficient vectors at each outer loop.

dbg_iter#

List of the number of iterations at each outer loop.

dbg_loss#

List of the losses at each outer loop.

grad#

Internal buffer that is implementation-defined.

is_active#

Boolean buffer to indicate the active variables.

is_screen#

Boolean buffer to indicate the screen variables.

iters#

Number of coordinate descent iterations.

loss#

Loss \(\frac{1}{2} \|S^{-\frac{1}{2}} v - S^{\frac{1}{2}} A^\top \beta\|_2^2\).

resid#

Residual \(v - S A^\top \beta\).

screen_AS#

\(A S\).

screen_ASAT_diag#

Diagonal of \(A S A^\top\).

screen_set#

Screen set buffer.

screen_set_size#

Screen set size.