adelie.adelie_core.state.StateCSSCov64#

class adelie.adelie_core.state.StateCSSCov64#

Core state class for CSS via covariance method.

Methods

__init__(*args, **kwargs)

Overloaded function.

solve(self)

Solves the state-specific problem.

Attributes

L_T

Lower Cholesky factor of \(\Sigma_{TT}\) where \(T\) is the current subset.

S_resid

Residual covariance matrix \(\Sigma - \Sigma_{\cdot T} \Sigma_{TT}^{\dagger} \Sigma_{T \cdot}\) where \(T\) is the current subset.

benchmark_L_T

Benchmark time for updating the Cholesky factor after adding a feature.

benchmark_L_U

Benchmark time for updating the Cholesky factor after removing a feature.

benchmark_S_resid

Benchmark time for updating the residual covariance matrix after removing a feature.

benchmark_init

Benchmark time for the initialization.

benchmark_resid_fwd

Benchmark time for updating the residual covariance matrix after adding a feature.

benchmark_scores

Benchmark time for computing the scores.

subset

Selected subset.

__init__(*args, **kwargs)#

Overloaded function.

  1. __init__(self: adelie.adelie_core.state.StateCSSCov64, S: numpy.ndarray[numpy.float64[m, n], flags.f_contiguous], subset_size: int, subset: numpy.ndarray[numpy.int64[1, n]], method: str, loss: str, max_iters: int, n_threads: int) -> None

  2. __init__(self: adelie.adelie_core.state.StateCSSCov64, arg0: adelie.adelie_core.state.StateCSSCov64) -> None

solve(self: adelie.adelie_core.state.StateCSSCov64) dict#

Solves the state-specific problem.

L_T#

Lower Cholesky factor of \(\Sigma_{TT}\) where \(T\) is the current subset.

S_resid#

Residual covariance matrix \(\Sigma - \Sigma_{\cdot T} \Sigma_{TT}^{\dagger} \Sigma_{T \cdot}\) where \(T\) is the current subset.

benchmark_L_T#

Benchmark time for updating the Cholesky factor after adding a feature.

benchmark_L_U#

Benchmark time for updating the Cholesky factor after removing a feature.

benchmark_S_resid#

Benchmark time for updating the residual covariance matrix after removing a feature.

benchmark_init#

Benchmark time for the initialization.

benchmark_resid_fwd#

Benchmark time for updating the residual covariance matrix after adding a feature.

benchmark_scores#

Benchmark time for computing the scores.

subset#

Selected subset.