adelie.sklearn.CSSModelSelection#
- class adelie.sklearn.CSSModelSelection(alpha: float, n_inits: int = 1, n_sims: int = 10000, n_threads: int = 1, seed: int | None = None)[source]#
Column Subset Selection estimator for model selection with scikit-learn compatible API.
The finite-sample guaranteed test procedure for Gaussian features is run to identify the smallest subset that most likely reconstructs the rest of the features based on the subset factor loss and swapping method.
- Parameters:
- alphafloat
Nominal level for the test.
- n_initsint, optional
Number of random initializations. Default is
1
.- n_simsint, optional
Number of Monte Carlo samples to estimate critical thresholds. Default is
int(1e4)
.- n_threadsint, optional
Number of threads. Default is
1
.- seedint, optional
Random seed. If
None
, no particular seed is used. Default isNone
.
See also
Methods
__init__
(alpha[, n_inits, n_sims, ...])Initialize the CSS estimator.
fit
(X[, y])Fit the CSS model under subset factor loss and perform model selection.
fit_cov
(S, n)Fit the CSS model under subset factor loss and perform model selection.
Get metadata routing of this object.
get_params
([deep])Get parameters for this estimator.
score
(X[, y, sample_weight])Compute the (negative) subset factor loss.
set_params
(**params)Set the parameters of this estimator.
set_score_request
(*[, sample_weight])Request metadata passed to the
score
method.- __init__(alpha: float, n_inits: int = 1, n_sims: int = 10000, n_threads: int = 1, seed: int | None = None)[source]#
Initialize the CSS estimator.
- fit(X: ndarray, y: ndarray | None = None)[source]#
Fit the CSS model under subset factor loss and perform model selection.
- Parameters:
- X(n, p) ndarray
Feature matrix.
- y(n,) ndarray, optional
Not used and only present here for API consistency by convention. Default is
None
.
- Returns:
- self
Returns an instance of self.
See also
- fit_cov(S: ndarray, n: int)[source]#
Fit the CSS model under subset factor loss and perform model selection.
- Parameters:
- S(p, p) ndarray
Positive semi-definite matrix \(\Sigma\).
- nint
Number of samples.
- Returns:
- self
Returns an instance of self.
See also
- get_metadata_routing()#
Get metadata routing of this object.
Please check User Guide on how the routing mechanism works.
- Returns:
- routingMetadataRequest
A
MetadataRequest
encapsulating routing information.
- get_params(deep=True)#
Get parameters for this estimator.
- Parameters:
- deepbool, default=True
If True, will return the parameters for this estimator and contained subobjects that are estimators.
- Returns:
- paramsdict
Parameter names mapped to their values.
- score(X: ndarray, y: ndarray | None = None, sample_weight: ndarray | None = None)[source]#
Compute the (negative) subset factor loss.
- Parameters:
- X(n, p) ndarray
Feature matrix.
- y(n,) ndarray, optional
Not used and only present here for API consistency by convention. Default is
None
.- sample_weights(n,) ndarray, optional
Not used and only present here for API consistency by convention. Default is
None
.
- Returns:
- lossfloat
Subset factor loss where \(T\) is given by the fitted subset.
- set_params(**params)#
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as
Pipeline
). The latter have parameters of the form<component>__<parameter>
so that it’s possible to update each component of a nested object.- Parameters:
- **paramsdict
Estimator parameters.
- Returns:
- selfestimator instance
Estimator instance.
- set_score_request(*, sample_weight: bool | None | str = '$UNCHANGED$') CSSModelSelection #
Request metadata passed to the
score
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config()
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed toscore
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it toscore
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.- Parameters:
- sample_weightstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for
sample_weight
parameter inscore
.
- Returns:
- selfobject
The updated object.