adelie.diagnostic.gradient_scores#
- adelie.diagnostic.gradient_scores(grad_norms: ndarray, lmdas: ndarray, *, alpha: float = 1, penalty: ndarray | None = None)[source]#
Computes the gradient scores.
The gradient score is given by
\[\begin{split}\begin{align*} \hat{s}_g = \begin{cases} \hat{h}_g \cdot (\alpha p_g)^{-1} ,& \alpha p_g > 0 \\ \lambda ,& \alpha p_g = 0 \end{cases} \qquad g = 1,\ldots, G \end{align*}\end{split}\]where \(\hat{h}\) is the gradient norm as in
adelie.diagnostic.gradient_norms()
.- Parameters:
- grad_norms(L, G) ndarray
Gradient norms.
- lmdas(L,) ndarray
Regularization parameters \(\lambda\).
- penalty(G,) ndarray
Penalty factor for each group. It must be a non-negative vector.
- alphafloat, optional
Elastic net parameter \(\alpha\). It must be in the range \([0,1]\). Default is
1
.
- Returns:
- scores(L, G) ndarray
Gradient scores.
See also