adelie.state.bvls#

adelie.state.bvls(X: MatrixNaiveBase32 | MatrixNaiveBase64, y_var: float, X_vars: ndarray, lower: ndarray, upper: ndarray, weights: ndarray, kappa: int, max_iters: int, tol: float, screen_set_size: int, screen_set: ndarray, is_screen: ndarray, active_set_size: int, active_set: ndarray, is_active: ndarray, beta: ndarray, resid: ndarray, grad: ndarray, loss: float)[source]#

Creates a BVLS state object.

Parameters:
X(n, p) Union[MatrixNaiveBase32, MatrixNaiveBase64]

Feature matrix. It is typically one of the matrices defined in adelie.matrix submodule.

y_varfloat

Variance of \(y\) equivalent to \(y^\top W y\).

X_vars(p,) ndarray

Variance of each column of X equivalent to \(\mathrm{diag}(X^\top W X)\).

lower(p,) ndarray

Lower bound for each variable.

upper(p,) ndarray

Upper bound for each variable.

weights(n,) ndarray

Observation weights.

kappaint

Violation batching size.

max_itersint

Maximum number of coordinate descents.

tolfloat

Coordinate descent convergence tolerance.

screen_set_sizeint

Number of screen groups. screen_set[i] is only well-defined for i in the range [0, screen_set_size).

screen_set(p,) ndarray

Screen set buffer. screen_set[i] is the i th screen variable that is in the range [0, p).

is_screen(p,) ndarray

Boolean vector indicating whether the j th feature is screen.

active_set_sizeint

Number of active groups. active_set[i] is only well-defined for i in the range [0, active_set_size).

active_set(p,) ndarray

Active set buffer. active_set[i] is the i th active variable that is in the range [0, p).

is_active(p,) ndarray

Boolean vector indicating whether the j th feature is active.

beta(p,) ndarray

Coefficient vector.

resid(n,) ndarray

Residual \(y-X\beta\).

grad(p,) ndarray

Internal buffer that is implementation-defined.

lossfloat

The current loss \(\frac{1}{2} \|y - X\beta\|_W^2\).

Returns:
wrap

Wrapper state object.