adelie.adelie_core.matrix.MatrixConstraintDense64C#

class adelie.adelie_core.matrix.MatrixConstraintDense64C#

Core matrix class for dense constraint matrix.

Methods

__init__(self, mat, n_threads)

cols(self)

Returns the number of columns.

cov(self, arg0, arg1)

Computes the covariance matrix.

mul(self, arg0, arg1)

Computes a matrix-vector multiplication.

rmmul(self, arg0, arg1, arg2)

Computes a row vector-matrix multiplication.

rmmul_safe(self, arg0, arg1, arg2)

Computes a row vector-matrix multiplication.

rows(self)

Returns the number of rows.

rvmul(self, arg0, arg1)

Computes a row vector-vector multiplication.

rvmul_safe(self, arg0, arg1)

Computes a row vector-vector multiplication.

rvtmul(self, arg0, arg1, arg2)

Computes a row vector-scalar multiplication increment.

sp_mul(self, arg0, arg1, arg2)

Computes a matrix-sparse vector multiplication.

tmul(self, arg0, arg1)

Computes a matrix transpose-vector multiplication.

Attributes

ndim

Number of dimensions.

shape

Shape of the matrix.

__init__(self: adelie.adelie_core.matrix.MatrixConstraintDense64C, mat: numpy.ndarray[numpy.float64[m, n], flags.c_contiguous], n_threads: int) None#
cols(self: adelie.adelie_core.matrix.MatrixConstraintBase64) int#

Returns the number of columns.

Returns:
colsint

Number of columns.

cov(self: adelie.adelie_core.matrix.MatrixConstraintBase64, arg0: numpy.ndarray[numpy.float64[m, n], flags.f_contiguous], arg1: numpy.ndarray[numpy.float64[m, n], flags.writeable, flags.f_contiguous]) None#

Computes the covariance matrix.

Computes the covariance matrix A @ Q @ A.T.

Parameters:
Q(d, d) ndarray

Matrix of weights.

out(m, m) ndarray

Matrix to store in-place the result.

mul(self: adelie.adelie_core.matrix.MatrixConstraintBase64, arg0: numpy.ndarray[numpy.float64[1, n]], arg1: numpy.ndarray[numpy.float64[1, n], flags.writeable]) None#

Computes a matrix-vector multiplication.

Computes the matrix-vector multiplication v.T @ A.

Parameters:
v(m,) ndarray

Vector to multiply with the matrix.

out(d,) ndarray

Vector to store in-place the result.

rmmul(self: adelie.adelie_core.matrix.MatrixConstraintBase64, arg0: int, arg1: numpy.ndarray[numpy.float64[m, n], flags.f_contiguous], arg2: numpy.ndarray[numpy.float64[1, n], flags.writeable]) None#

Computes a row vector-matrix multiplication.

Computes the matrix-vector multiplication A[j].T @ Q.

Warning

This function is not thread-safe!

Parameters:
jint

Row index.

Q(d, d) ndarray

Matrix to dot product with the j th row.

out(d,) ndarray

Vector to store in-place the result.

rmmul_safe(self: adelie.adelie_core.matrix.MatrixConstraintBase64, arg0: int, arg1: numpy.ndarray[numpy.float64[m, n], flags.f_contiguous], arg2: numpy.ndarray[numpy.float64[1, n], flags.writeable]) None#

Computes a row vector-matrix multiplication.

Thread-safe version of rmmul().

Parameters:
jint

Row index.

Q(d, d) ndarray

Matrix to dot product with the j th row.

out(d,) ndarray

Vector to store in-place the result.

rows(self: adelie.adelie_core.matrix.MatrixConstraintBase64) int#

Returns the number of rows.

Returns:
rowsint

Number of rows.

rvmul(self: adelie.adelie_core.matrix.MatrixConstraintBase64, arg0: int, arg1: numpy.ndarray[numpy.float64[1, n]]) float#

Computes a row vector-vector multiplication.

Computes the dot-product A[j].T @ v.

Warning

This function is not thread-safe!

Parameters:
jint

Row index.

v(d,) ndarray

Vector to dot product with the j th row.

Returns:
dotfloat

Row vector-vector multiplication.

rvmul_safe(self: adelie.adelie_core.matrix.MatrixConstraintBase64, arg0: int, arg1: numpy.ndarray[numpy.float64[1, n]]) float#

Computes a row vector-vector multiplication.

Thread-safe version of rvmul().

Parameters:
jint

Row index.

v(d,) ndarray

Vector to dot product with the j th row.

Returns:
dotfloat

Row vector-vector multiplication.

rvtmul(self: adelie.adelie_core.matrix.MatrixConstraintBase64, arg0: int, arg1: float, arg2: numpy.ndarray[numpy.float64[1, n], flags.writeable]) None#

Computes a row vector-scalar multiplication increment.

Computes the vector-scalar multiplication A[j] * v. The result is incremented into the output vector.

Warning

This function is not thread-safe!

Parameters:
jint

Row index.

vfloat

Scalar to multiply with the j th row.

out(d,) ndarray

Vector to increment in-place the result.

sp_mul(self: adelie.adelie_core.matrix.MatrixConstraintBase64, arg0: numpy.ndarray[numpy.int64[1, n]], arg1: numpy.ndarray[numpy.float64[1, n]], arg2: numpy.ndarray[numpy.float64[1, n], flags.writeable]) None#

Computes a matrix-sparse vector multiplication.

Computes the matrix-sparse vector multiplication v.T @ A where v is represented by the sparse-format indices and values.

Parameters:
indices(nnz,) ndarray

Vector of indices with non-zero values of v. It does not have to be sorted in increasing order.

values(nnz,) ndarray

Vector of values corresponding to indices.

out(d,) ndarray

Vector to store in-place the result.

tmul(self: adelie.adelie_core.matrix.MatrixConstraintBase64, arg0: numpy.ndarray[numpy.float64[1, n]], arg1: numpy.ndarray[numpy.float64[1, n], flags.writeable]) None#

Computes a matrix transpose-vector multiplication.

Computes the matrix transpose-vector multiplication v.T @ A.T.

Parameters:
v(d,) ndarray

Vector to multiply with the matrix.

out(m,) ndarray

Vector to store in-place the result.

ndim#

Number of dimensions. It is always 2.

shape#

Shape of the matrix.